Tag Archives: Impala

Hadoop Ecosystem Components contd…(Tutorial Day 6)

So continuing the old post, here we will discuss some more components of Hadoop ecosystem.

Data Integration or ETL Components of Hadoop Ecosystem

Sqoop (SQL-to-Hadoop) is a big data tool that offers the capability to extract bulk data from non-Hadoop  or relational databases (like MySQL, Oracle,Teradata, Postgre) , transform the data into a form usable by Hadoop, and then load the data into HDFS, Hbase or Hive also. This process is similar to Extract, Transform, and Load.It parallelizes data transfer for fast performance, copies data quickly from external system to Hadoop & makes data analysis more efficient.

It’s batch oriented and not suitable for low latency interactive queries. It provides a scalable processing environment for both structured and non-structured data.

Sqoop Import

The import tool imports individual tables from RDBMS to HDFS. Each row in a table is treated as a record in HDFS. All records are stored as text data in text files or as binary data in Avro and Sequence files.

Sqoop Export

The export tool exports a set of files from HDFS back to an RDBMS. The files given as input to Sqoop contain records, which are called as rows in table. Those are read and parsed into a set of records and delimited with user-specified delimiter.

Sqoop Use Case-

Coupons.com , Apollo Group uses Sqoop component of the Hadoop ecosystem to enable transmission of data between Hadoop & data warehouse .
  • Flume-

Apache Flume is a distributed, reliable, and available service for efficiently collecting, aggregating, and moving large amounts of streaming or log files data into the Hadoop Distributed File System (HDFS).  It is used for collecting data from its origin and sending it back to the resting location (HDFS).Flume accomplishes this by outlining data flows that consist of 3 primary structures channels, sources and sinks. The processes that run the dataflow with flume are known as agents and the bits of data that flow via flume are known as events.

Flume helps to collect data from a variety of sources, like logs, jms, Directory etc.
Multiple flume agents can be configured to collect high volume of data.
It scales horizontally & is stream oriented.It provides high throughput and low latency.It is fault tolerant.

Both Sqoop and Flume, pull the data from the source and push it to the sink. The main difference is Flume is event driven, while Sqoop is not.

Flume Use Case –

Twitter source connects through the streaming API and continuously downloads the tweets (called as events). These tweets are converted into JSON format and sent to the downstream Flume sinks for further analysis of tweets and retweets to engage users on Twitter.
Goibibo uses Flume to transfer logs from production system to HDFS.

Data Storage Component of Hadoop Ecosystem

HBase

Hbase is an open source, distributed, sorted map model.Its a column store-based NoSQL database solution & is similar to Google’s BigTable framework.It supports random reads and also batch computations using MapReduce. With HBase NoSQL database enterprise can create large tables with millions of rows and columns on hardware machine. The best practice to use HBase is when there is a requirement for random ‘read or write’ access to big datasets. HBase’s important advantage is that it supports updates on larger tables and faster lookup. The HBase data store supports linear and modular scaling. HBase stores data as a multidimensional map and is distributed. HBase operations are all MapReduce tasks that run in a parallel manner.

Its well integrated with Pig/Hive/Sqoop. It is consistent and partition tolerant system in CAP theorem.

HBase Use Case-

Facebook is one the largest users of HBase with its messaging platform built on top of HBase in 2010.

Cassandra

Apache Cassandra is a free and open-source distributed database management system designed to handle large amounts of data across many commodity servers.This database is the right choice when you need scalability and high availability without compromising performance. Linear scalability and proven fault-tolerance on commodity hardware or cloud infrastructure make it the perfect platform for mission-critical data.Cassandra’s support for replicating across multiple data-centers is best-in-class, providing lower latency for your users and the peace of mind of knowing that you can survive regional outages.

Use Cases:

For Cassandra, Twitter is an excellent example. We know that, like most sites, user information (screen name, password, email address, etc), is kept for everyone and that those entries are linked to one another to map friends and followers. And, it wouldn’t be Twitter if it weren’t storing tweets, which in addition to the 140 characters of text are also associated with meta-data like timestamp and the unique id that we see in the URLs.

Monitoring, Management and Orchestration Components of Hadoop Ecosystem- Oozie and Zookeeper

  • Oozie-

Oozie is a workflow scheduler where the workflows are expressed as Directed Acyclic Graphs. Oozie runs in a Java servlet container Tomcat and makes use of a database to store all the running workflow instances, their states ad variables along with the workflow definitions to manage Hadoop jobs (MapReduce, Sqoop, Pig and Hive).The workflows in Oozie are executed based on data and time dependencies.

Oozie Use Case:

The American video game publisher Riot Games uses Hadoop and the open source tool Oozie to understand  the player experience.

  • Zookeeper-

Zookeeper is the king of coordination and provides simple, fast, reliable and ordered operational services for a Hadoop cluster. Zookeeper is responsible for synchronization service, distributed configuration service and for providing a naming registry for distributed systems.

Zookeeper Use Case-

Found by Elastic uses Zookeeper comprehensively for resource allocation, leader election, high priority notifications and discovery. The entire service of Found built up of various systems that read and write to   Zookeeper.

Here is the recorded session from the IBM Certified Hadoop Developer Course at DeZyre about the components of Hadoop Ecosystem –
Several other common Hadoop ecosystem components include: Avro, Cassandra, Chukwa, Mahout, HCatalog, Ambari and Hama. By implementing Hadoop using one or more of the Hadoop ecosystem components, users can personalize their big data experience to meet the changing business requirements. The demand for big data analytics will make the elephant stay in the big data room for quite some time.

Data Serialisation (Data Interchange Protocols)

AVRO: Apache Avro is a language-neutral data serialization system, developed by  Apache Hadoop.Data serialization is a mechanism to translate data in computer environment (like memory buffer, data structures or object state) into binary or textual form that can be transported over network or stored in some persistent storage media.Java and Hadoop provides serialization APIs, which are java based, but Avro is not only language independent but also it is schema-based.Once the data is transported over network or retrieved from the persistent storage, it needs to be deserialized again. Serialization is termed as marshalling and deserialization is termed as unmarshalling.

Avro uses JSON format to declare the data structures. Presently, it supports languages such as Java, C, C++, C#, Python, and Ruby.Avro has a schema-based system. A language-independent schema is associated with its read and write operations.

Like Avro, there are other serialization mechanisms in Hadoop such as Sequence Files, Protocol Buffers, and Thrift.Avro creates a self-describing file named Avro Data File, in which it stores data along with its schema in the metadata section.Avro is also used in Remote Procedure Calls (RPCs). During RPC, client and server exchange schemas in the connection handshake.

To serialize Hadoop data, there are two ways −

  • You can use the Writable classes, provided by Hadoop’s native library.
  • You can also use Sequence Files which store the data in binary format.

The main drawback of these two mechanisms is that Writables and SequenceFiles have only a Java API and they cannot be written or read in any other language.

Therefore any of the files created in Hadoop with above two mechanisms cannot be read by any other third language, which makes Hadoop as a limited box. To address this drawback, Doug Cutting created Avro, which is a language independent data structure.

Use Case:

Content credit : http://www.tutorialspoint.com

Avro provides rich data structures. For example, you can create a record that contains an array, an enumerated type, and a sub record. These datatypes can be created in any language, can be processed in Hadoop, and the results can be fed to a third language.

 

 Thrift :

Thrift is a lightweight, language-independent software stack with an associated code generation mechanism for RPC. Thrift provides clean abstractions for data transport, data serialization, and application level processing. Thrift was originally developed by Facebook and now it is open sourced as an Apache project. Apache Thrift is a set of code-generation tools that allows developers to build RPC clients and servers by just defining the data types and service interfaces in a simple definition file. Given this file as an input, code is generated to build RPC clients and servers that communicate seamlessly across programming languages.

Thrift supports a variety of languages including C++, Java, Python, PHP, Ruby.

To learn more on Hadoop…keep on reading these tutorials…every day we try to get something new and interesting for all my readers !!

Now we will start learning all Ecosystem components in more detail. Click here to read about how MapReduce Algorithm works with an easy example.

Advertisements

Hadoop Ecosystem Components contd…(Tutorial Day 5)

So continuing the old post, vendors that provide Hadoop-based platforms include Cloudera, Hortonworks, MapR, Greenplum, IBM, and Amazon. Here we will discuss more components of Hadoop ecosystem.

Data Access Components of Hadoop Ecosystem

  • Pig-

Apache Pig is a high-level platform for creating programs that run on Apache Hadoop. Apache Pig is a tool developed by Yahoo for analyzing huge data sets efficiently and easily. The high level data flow language for this platform is called Pig Latin. Pig can execute its Hadoop jobs in MapReduce, Apache Tez, or Apache Spark. The salient property of Pig programs is that their structure is amenable to substantial parallelization, which in turns enables them to handle very large data sets.

At the present time, Pig’s infrastructure layer consists of a compiler that produces sequences of Map-Reduce programs, for which large-scale parallel implementations already exist (e.g., the Hadoop subproject). Pig’s language layer currently consists of a textual language called Pig Latin.Pig is an open source project under the Apache Software Foundation, so you can learn about it online

Pig Latin is basically used it to construct dataflows, to have a scheduled job to periodically crunch the massive data from HDFS and transfer the summarized data into a relational database for reporting, & ad-hoc analyses. Hive is used for simple ad-hoc analytical queries for the data in HDFS, as Hive queries are a lot faster to write for those types of queries. Its generally used by Yahoo, Twitter etc to process web logs,images,maps etc.

Usage of Apache Pig:

  • Using Pig Latin, programmers can perform MapReduce tasks easily without having to type complex codes in Java, as it uses multi-query approach, thereby reducing the length of codes. For example, an operation that would require you to type 200 lines of code (LoC) in Java can be easily done by typing as less as just 10 LoC in Apache Pig. Ultimately Apache Pig reduces the development time by almost 16 times.
  • Pig Latin is SQL-like language and it is easy to learn Apache Pig when you are familiar with SQL.
  • Apache Pig provides many built-in operators to support data operations like joins, filters, ordering, etc. In addition, it also provides nested data types like tuples, bags, and maps that are missing from MapReduce.

Pig Use Case-

I am hereby using one of my fav use case of PIG Latin language, you can read here on Slideshare:

Scenario: You have a User data in one file ,website data in another. Now you want to find out the top 5 most visited pages by users of Age (18-25). For this scenario, MAp reduce program is full page length code, but in PIG Latin language its a small easily understandable code.

pig_latin-code_example
Code credit: Nick Dimiduk
  • Hive-

Hive is a Data warehouse system layer built on Hadoop. It allows to define a structure for unstructured big data and query the data using a SQL-like language called HiveQL. Its developed by Facebook & makes querying faster through indexing.

Hive Use Case-

Hive simplifies Hadoop at Facebook with the execution of 7500+ Hive jobs daily for Ad-hoc analysis, reporting and machine learning.

 

Read my next blog on more Hadoop ecosystem components (tutorial Day 6)

Types of Databases in existing world

The capture and analyzing of data is typically performed by database management systems, otherwise known as DBMS’s. These types of database software systems are programmed in SQL. SQL (pronounced “ess-que-el”) stands for Structured Query Language. SQL is used to communicate with a database. According to ANSI (American National Standards Institute), it is the standard language for relational database management systems. The most common of all the different types of databases is Relational Databases.

Let’s learn now the different types of databases that exist in today’s world and how to use them in our work.

Types of Databases

  • Relational Databases: A relational database is a collection of data items organized as a set of formally-described tables from which data can be accessed or reassembled in many different ways without having to reorganize the database tables. The relational database was invented by E. F. Codd at IBM in 1970. Example are: PostgreSQL, SQLite, MySQL ,Oracle, Sysbase.
  • No SQLDatabases/Non-relational Databases : A NoSQL (originally referring to “non SQL”, “non relational” or “not only SQL”) database provides a mechanism for storage and retrieval of data which is modeled in means other than the tabular relations used in relational databases. NoSQL databases are increasingly used in big data and real-time web applications.NoSQL systems are also sometimes called “Not only SQL” to emphasize that they may support SQL-like query languages. Motivations for this approach include: simplicity of design, simpler “horizontal” scaling to clusters of machines (which is a problem for relational databases), and finer control over availability. The data structures used by NoSQL databases (e.g. key-value, columnar, graph, or document) are different from those used by default in relational databases, making some operations faster in NoSQL.

Many NoSQL stores compromise consistency (in the sense of the CAP theorem) in favor of availability and partition tolerance.  Some reasons that block adoption of NoSQL stores include the use of low-level query languages, the lack of standardized interfaces, and huge investments in existing SQL.  Also, most NoSQL stores lack true ACID transactions or only support transactions in certain circumstances and at certain levels (e.g., document level).  Finally, RDBMS’s are usually much simpler to use as they have GUI’s where many NoSQL solution use a command-line interface.

 

  • New SQL Databases: NewSQL is a term to describe a new group of databases that share much of the functionality of traditional SQL relational databases, while offering some of the benefits of NoSQL technologies.Like it provides, ACID transactional consistency of traditional operational databases; the familiarity and interactivity of SQL; and the scalability and speed of NoSQL.

 

Example to understand both above Databases:

 

If we use a bank example, each aspect of a customer’s relationship with a bank is stored as separate row items in separate tables.  So the customer’s master details are in one table, the account details are in another table, the loan details in yet another, investments in a different table, and so on.  All these tables are linked to each other through the use of relations such as primary keys and foreign keys.

Non-relational databases, specifically a database’s key-value stores or key-value pairs, are radically different from this model.  Key-value pairs allow you to store several related items in one “row” of data in the same table.  We place the word “row” in quotes because a row here is not really the same thing as the row of a relational table.  For instance, in a non-relational table for the same bank, each row would contain the customer’s details as well as their account, loan and investment details.  All data relating to one customer would be conveniently stored together as one record.

In the relational model, there is an built-in and foolproof method of ensuring and enforcing business logic and rules at the database layer, for instance that a withdrawal is charged to the correct bank account, through primary keys and foreign keys.  In key-value stores, this responsibility falls squarely on the application logic and many people are very uncomfortable leaving this crucial responsibility just to the application.  This is one reason why relational databases will continued to be used.

However, when it comes to web-based applications that use databases, the aspect of rigorously enforcing business logic is often not a top priorities.  The highest priority is the ability to service large numbers of user requests, which are typically read-only queries.  For example, on a site like eBay, the majority of users simply browse and look through posted items (read-only operations).  Only a fraction of these users actually place bids or reserve the items (read-write operations).  And remember, we are talking about millions, sometimes billions, of page views per day.  The eBay site administrators are more interested in quick response time to ensure faster page loading for the site’s users, rather than the traditional priorities of enforcing business rules or ensuring a balance between reads and writes.

 

Types and examples of NoSQL databases

There have been various approaches to classify NoSQL databases, each with different categories and subcategories, some of which overlap. What follows is a basic classification by data model, with examples:

 

  1. Key-Value Pair (KVP) Databases: Key-value (KV) stores use the associative array (also known as a map or dictionary) as their fundamental data model. In this model, data is represented as a collection of key-value pairs, such that each possible key appears at most once in the collection. The key-value model can be extended to a discretely ordered model that maintains keys in lexicographic order. This extension is computationally powerful, in that it can efficiently retrieve selective key e.g., InfinityDB, Oracle NoSQL Database and dbm.
  2. Document Databases: each document-oriented database implementation differs on the details of this definition, in general, they all assume that documents encapsulate and encode data (or information) in some standard formats or encodings. Encodings in use include XML and JSON. Documents are addressed in the database via a unique key that represents that document. One of the other defining characteristics of a document-oriented database is that in addition to the key lookup performed by a key-value store, the database offers an API or query language that retrieves documents based on their contents.

Different implementations offer different ways of organizing and/or grouping documents:

  • Collections
  • Tags
  • Non-visible metadata
  • Directory hierarchies

In short, Store documents or web pages, e.g.,MongoDB, Apache CouchDB

  1. Columnar Databases: Store data in columns, e.g., Hbase, SAP Hana
  2. Graph Databases: This kind of database is designed for data whose relations are well represented as a graph consisting of elements interconnected with a finite number of relations between them. The type of data could be social relations, public transport links, road maps or network topologies. Stores nodes and relationship, e.g., Neo4J, FlockDB
  3. Spatial Databases: For map and nevigational data, e.g.,OpenGEO, PortGIS, ArcSDE
  4. In-Memory Database (IMDB): All data in memory. For real time applications
  5. Cloud Databases: Any data that is run in a cloud using IAAS,VM Image, DAAS
            dbimages                                                                      Image courtesy: theWindowsclub.com
Advantages of NoSQL database:
  • Process data faster
  • Have simple data models to understand and execute
  • manage unstructured text